Students should be able to select and apply the following equations from the Physics equation sheet.

Equation number	Word equation	Symbol equation
1	(final velocity) ² – (initial velocity) ² = 2 × acceleration × distance	$v^2 - u^2 = 2 a s$
2	elastic potential energy = $0.5 \times \text{spring constant} \times (\text{extension})^2$	$E_e = \frac{1}{2} k e^2$
3	change in thermal energy = mass × specific heat capacity × temperature change	$\Delta \mathbf{E} = \mathbf{m} \mathbf{c} \ \Delta \boldsymbol{\theta}$
4	period = $\frac{1}{\text{frequency}}$	
5 HT	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	F = B I 1
6	thermal energy for a change of state = mass × specific latent heat	E = m L
7 HT	potential difference across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_s I_s = V_p I_p$

Equations required for higher tier papers only are indicated by HT in the left-hand column.